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Lecture 8

Longitudinal studies and survival
analysis
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e Outline

e Benefits and challenges of longitudinal studies
e Objectives of survival analysis

* Censored data

 Survival distributions

* Kaplan-Meier Curves

* Cox regression
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* Measures collected repeatedly on the same
individuals over time.

What are longitudinal studies?

* In epidemiology, a cohort study is a longitudinal
study.

* A cohortis a set of individuals sharing a common
characteristic (e.g. same baseline age) or experience
in a particular time period.
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Q Study begins Outcomes
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' Benefits of longitudinal studies
Incident events are recorded

Prospective collection of exposure data

Temporal order of exposures and outcomes is
observed

Measurement of individual change in outcomes
Provides better handling of missing data
Provides a better estimate of lifetime prevalence

N o v s

Permits the study of risk and disease progression
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1. Participant follow-up (missing data)

Challenges of longitudinal studies

2. Analysis of correlated data
3. Time-varying covariates
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Diagnosis

— What is the chance that my patient will develop this
disease?

Clinical longitudinal studies

Prognosis
— How long will it take for this patient to recover?

Response to treatment
— Which treatment is best for this patient?
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* Estimate time-to-event for a group of individuals,

such as time until second heart-attack for a group of
patients.

e To compare time-to-event between two or more
groups, such as treated vs. placebo patients in a
randomized controlled trial.

* To assess the relationship of co-variables to time-to-
event, such as: does weight, insulin resistance, or
cholesterol influence survival time of heart-attack
patients?

Objectives of survival analysis
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Why use survival analysis?

* Why not compare mean time-to-event between your
groups using a t-test or linear regression?

-- ignores censoring

 Why not compare proportion of events in your
groups using risk/odds ratios or logistic regression?

-- ignores time
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* Time-to-event: The time from entry into a study
until a subject has a particular outcome

Survival Analysis: Terms

e Censoring: Subjects are said to be censored if they
are lost to follow up or drop out of the study, or if
the study ends before they die or have an outcome
of interest. They are counted as alive or disease-free
for the time they were enrolled in the study.

— If dropout is related to both outcome and treatment,
dropouts may bias the results
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Regression vs. Survival Analysis

m

Linear regression Linear changes
Logistic regression Odds ratios
Survival analysis Hazard ratios
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Incidence and thickness of primary tumours and survival of patients with cutaneous
malignant melanoma in relation to socioeconomic status. MacKie et al. BMJ 1996; 312:

1125
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Determinants of survival following HIV-1 seroconversion after the introduction of
HAART. CASCADE Collaboration Lancet 2003; 362:1267-74

Death
Pre-1997

"| Estimated proportion

alive 10 years following Tl

Estimated proportion
alive 10 years following

Proportion alive

_| seroconversion el —| seroconversion
Age (vears)  HR (95% CI) . Age (years)  HR (95% C)
16-24: 064 (0-60-0-68) 16-24:  0-87 (0-82-0-91)
25-34: 056 (0-53-0-60)- - -~ - - - 2534 0-87(0-83-090) -~ ----
3544 042(0-37-0-48) — — —- 35-44;  0-82(0-76-0-89) — ——-
=45 0:28(0-22-0-37) ——— = =45 0-66 (0-54-0-80)

cumulative survival

Proportion alive =
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Permanent work incapacity, mortality and survival without work incapacity among
occupations and social classes: a cohort study of ageing men in Geneva. Guberan et al
(1998) International Journal of Epidemiology 27:1026-32
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Data Structure: survival analysis

Two-variable outcome :

 Time variable: t = time at last disease-free
observation or time at event

e Censoring variable: ¢ =1 if had the event; ¢ =0 no
event by time t
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H Censored Data

e Some patients may still be alive or in remission at the
end of the study period

* The exact survival times of these subjects are
unknown

e These are called censored observation or censored
times and can also occur when individuals are lost to
follow-up after a period of study
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e Types of censoring
Weeks ——» * Subject does not
2 4 6 8 1012 experience event of
| | [ | | .
T=5 ! Interest
A X :
Sl T=12 ' sdyend  © INCOmplete follow-up
. T =35 Withdrawn | — Lost to follow-up
5 T=8 ' Study end — Withdraws from study
. T=6 . — D|es.(|f not being
_— studied)
F X

 Left or right censored
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Common examples
* Termination of the study

e Death due to a cause that is not the event of interest
e Loss to follow-up

Right Censoring (T>t)

We know that subject survived at least to time t.
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e Right censoring
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Introduction to survival distributions

 Tthe event time for an individual, is a random
variable having a probability distribution.

* Different models for survival data are distinguished
by different choice of distribution for T
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9 Probability density function: f(t)

In the case of human longevity, T is unlikely to follow a normal
distribution, because the probability of death is not highest in the

middle ages, but at the beginning and end of life.

Hypothetical data: Frequencies of different imes—to—death
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People have a high chance of dying | e
in their 70’s and 80's; — | c

n oy -
t

BUT they have a smaller chance of
dying in their 90’s and 100’s,
because few people make it long
enough to die at these ages. .
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Probability density function: f(t)
The probability of the failure time occurring at

exactly time t (out of the whole range of possible
t’s).
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e Survival function: 1-F(t)

The goal of survival analysis is to estimate and compare survival
experiences of different groups.

Survival experience is described by the cumulative survival
function:

S)=1-P(T <t)=1-F(¢)

Example: If t=100 years, S(t=100) = probability of surviving
beyond 100 years.
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Let T denote the survival time

Survival Function or Curve

S(t) = P(surviving longer than time t)
=P(T>t)

The function S(t) is also known as the cumulative survival
function. 0<S(t) <1

S(t)=number of patients surviving longer than t
total number of patients in the study
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Non-parametric estimate of the survival function:

Simply, the empirical probability of surviving past
certain times in the sample (taking into account

Kaplan-Meier

censoring).
Timet,  #atrisk # events §
0 20 0 1.00
20 2 [1-(2/20)]*1.00=0.90
6 18 0 [1-(0/18)]*0.90=0.90
10 15 1 [1-(1/15)]*0.90=0.84
13 14 2 (1-(2/14)1*0.84=0.72
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Kaplan-Meier Curve

Tumoeor Extent Survival Curves
N = 2474
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e Survival Data (right-censored)

ESubject A
iSubject B
'Subject C

ESubject D

ESubject E

X | 1. subject E dies at 4
months

Beginning of study End of study
-> Time in months >
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e Corresponding Kaplan-Meier Curve

100%

/

Probability of
surviving to 4
months is 100% =
5/5

Fraction
surviving this
death = 4/5

Subject E dies at 4
months
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e Survival Data

iSubjectA 2. subject A
: drops out after
6 months

iSubject B

‘Subject C 3. subject C dies
i X [at 7 months

ESubject D

ESubject E

X | 1. subject E dies at 4
months

Beginning of study End of study
-> Time in months >
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e Corresponding Kaplan-Meier Curve

100%

Fraction
surviving this
death = 2/3

subject C dies at
7 months
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9 Comparing 2 groups
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Days Elapsed

Use log-rank test to test the null hypothesis of no difference
between survival functions of the two groups
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Limitations of Kaplan-Meier

Mainly descriptive

Doesn’t control for covariates

Requires categorical predictors

Can’t accommodate time-dependent variables
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 Survivor function, S(t) defines the probability of

surviving longer than time t

— this is what the Kaplan-Meier curves show.

Survivor function and hazard function

— Hazard function is the derivative of the survivor function
over time h(t)=dS(t)/dt

e Survivor and hazard functions can be converted into
each other

,,,,,,

e Hazard Function

* The hazard function h(t) of survival time T gives the
conditional failure rate

* The hazard function is also known as the
instantaneous failure rate, force of mortality, and
age-specific failure rate

* The hazard function gives the risk of failure per unit
time during the aging process
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Hazard Function

* Event = death, scale = months since treatment
e “h(t) =1% at t = 12 months”
* “At 1 year, patients are dying at a rate of 1% per

month”

e “At 1 year the chance of dying in the following month

is 1%”

5@ i @ % B T
e Hazard Function
. Pt<T<t+At/T >t
h(t)= lim ( )
At——0 At
In words: the probability that if you survive to t, you
will succumb to the event in the next instant.
. . 4
Hazard from density and survival: A(t) = EAU)
S(?)
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H Hazard Function
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e Limit of Kaplan-Meier curves

* What happens when you have several covariates that you
believe contribute to survival?

* Example

— Smoking, hyperlipidemia, diabetes, hypertension,
contribute to time to myocardial infarct

e Can use stratified K-M curves — for 2 or maybe 3 covariates

* Need another approach — multivariate Cox proportional
hazards model is most common -- for many covariates

— (think multivariate regression or logistic regression rather
than a Student’s t-test or the odds ratio from a 2 x 2 table)
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 Add covariates to the model

Cox Proportional Hazards Model

e Change in a prognostic factor - proportional change
in the hazard (on the log scale)

e Can test the effect of the prognostic factor as in
linear regression - H,: =0
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* Does not accommodate variables that change over
time
— Most variables (e.g. gender, ethnicity, or congenital
condition) are constant
* If necessary, one can program time-dependent variables
* When might you want this?
* Baseline hazard function, h_(t), is never specified

— You can estimate h (t) accurately if you need to estimate
S(t).

Limitations of Cox PH model
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e Survival analyses quantifies time to a single,
dichotomous event

e Handles censored data well

e Survival and hazard can be mathematically converted
to each other

* Kaplan-Meier survival curves can be compared
statistically and graphically

* Cox proportional hazards models help distinguish
individual contributions of covariates on survival,
provided certain assumptions are met.

Summary
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SAGE

e Currently only cross-sectional data available

e Future releases of data will allow longitudinal and
survival analysis

* Possibility for some important research studies on
social determinants of health!
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